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THE FREQUENCY OF TORSIONAL VIBRATIOR OF A TAPERED BEAM 

By Robert P. Coleman 

A solution for the equation of torsional vibration oT 
tapered beams has been r^ound in terms of Bessel functions 
for beams satisfying the following conditions: (a> The 
cross sections along the span are similar in shape: and 
(b) the torsional stiffness of a section can be expressed 
as a power of a linear function of distance along the span. 
The method of applying the analysis to actual cases has 
been described. Charts are given from which numerical 
values can be immediately obtained for most casea of prac- 
tical importance. The theoretical values of the frequency 
ratio have been experimentally checked on five beams hav- 
ing different amounts of taper. 

c 
INTRODUCTION 

The frequency of torsional vibration of a uniform 
beam can be calculated for a number of shapes of cross 
section. (See references 1 and 2.) The corresponding 
cases of tapered beams either have not been solved or are 
not readily available. A special case of longitudinal 
vibration of tapered beams treated by Nab1 (reference 3) 
is applicable also to torsion for a special case (n = 2). 
In the present papor, the analysis has boon extended to 
the case of tapered beanssubject to rather broad condi- 
tions, and a closed solution of the differential equation 
of motion has been obtained in terms of Bessel functions. 
The result is expressed in such a form that the effect of 
taper is given independently of the effect of cross sec- 
tion. Hence, except for certain limitations imposed on 
the solution of the differential equation, the frequency 
of a tapered beam can be calculated if the solution for 
the corresponding uniform beam is known. 
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SYMBOLS 

angular displacement from equilibrium. 

rectangular ooordinatks in beam. 

polar moment of inertia of section. 

torsion modulus of section. 

shear modulus of material. 

length of beam. 

time. 

density of material. 

angular frequency (u, = 2nf, where f is 
in cycles per second). 

angular frequency of a uniform beam, 

x = 

c, 

rl = 

e .= 

tors5on function. 

constants. 

exponent in expression for variation of 
torsion modulus alqng span (n = 2h + 1). 

(n - 1)/2. 

semichord. 
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cg 
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~o=,ll"n,J~= 'IL '-- 
t l- qt cu", l 

L r' roots of equation (7). 
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m, number of mode. 

Jh (t).Q(h, Bessel functions of first and second kind, 
respectively. 

Subscripts: 

0, at root. 

t, at tip. 

ANALYSIS 

The differential equatibn for the mction of a section 
of a beam in torsional vibration (reference 1) is 

PI 
ae8 a 

Pz=z GJ(z) g 
I 

(11 

There GJ is.the torsion&l rigidity of the section. For 
harmonic vibrations it.39 known that 

-a... 

F 

a28 
z= 

Then 

The functions Ip and J (reference.4) for a prismatic 
beam may be bpressed in the form 

- d 9 

Ip P uJa 8 o + = 
JG 

, 
(a, 
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Ip = 
ff 

W + Y2 1 dx dY 

J= 
ff( 

x= acp + ya -I- x - - y - 
ay 

ax ay 
t 

where rp, the torsion function, depends upon the cross 
section. This function is known for a number of shapes 
of cross section. A fer examples from references 5 and 6 
are given: 

(a> 

(b) 

cc> 

Circle of radius r: 

V = 0, J = IF = (-rare> $ 

Ellipse with semiaxes a and b: 

ql = L 3," - b2 xy, J = (nab) a2 lP 
a + b2 aa + b2 

Rectangle with sides 2a and 2b: . . 

0 

3 m 
-ry + 4ba 2 

t-F sinh (En+l) 7-rx 

T= c 2b sin (2n+l) w 
l-r 

n=" (2n+1)3 cash (2n+;; 7Ta 
2b 

where k has the values given by tho follomZng table. 

a/b 1.00 1.50 1.75 2.00 2.50 3.00 4 6 8 10 m 

k .424 .589 ,642 .6ee .74P .790 .844 .E96 .922 ,940 1 

The torsion modulus, J, of a section of a taperod 
boam is very nearly tho samo as that of a prismatic bean 
having the same section. A comparison of the angular de- 
flections produced by a static torque in a conical shaft 
as calculated by the exact theory (reference 7) and by in- 

l 
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teqrating the torsion modulus for a cylindrical shaft 
shows a discrepancy of the order of l/6 t&a, where CL 
is the half angle of the cone. For a cone with tan a = 
0.10, the dfscrepancy is only G.17 percent. In the fol- 
lowing analysis, this distinction in the torsion modulus 
has been ignored. 

The boundary ccnditions to be applied to the solution 
of equation (2) will depend upon the method of support of 
the beam. For the case of most interest in this paDer, a 
beam built in at z = 0 and free at z = 1, the boundary 
conditions are: 

at z=O, e 0 = 

at z=Z, a8 5; = 0 

A solution of equation (2) has been found for the 
case of tapered beans satisfying the following conditions: 

(a) All cross sections along the sgan are similar in 
shage. 

(5) The torsion modulus 3 can be expressed as a 
Qoaer of a linear function of position alonq the span. 
Then, from condition (a), the ratio Ip/J is a constant 
along the span and is equal to its value at the root sec- 
tion, . I, /Jo. From condition (b), -- 0 

J = J,(l - Bz)~ = Joon 

The torsion modulus is proportional to the fourth power of 
the linear dimensions. Hence, in terms of the semichord, 

If = ;- = ($4 
0 

At the tip, 

(3) 
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. 
It may be noted that 

1 - 
B.= z qt . ----- 

Figure 1 shows a number of typical plan forms corre- 
sponding to different values of n. The unner half of A.. 
this figure can also be considered as a plot of semichord 1 
against V for-different values of n. In this case ?-I 
increases from right to left. The following properties of 
these curves are noted: 

at q=1, d c/co n 
-a- = - 4 

at T=O, d c/co 
-a = O 

Then n>4 

= m nhen nc4 

In terms of $ and B, equation (2) can be written 

A3 _- 
aF 

+ 1 dJ de + &p p 12 8 = 0 
J de dt 

For the case of, a uniform beam 
tion (2) has the well-known solution 

(dJ/d[ = O), equa- 

0 = Cl sin ,6 w '1 e + Ce co9 f3 u) Z [ 

The frequency equation for a cantilever beam is 

cos~wZ=O * 

j3 w Z = (2m - 1) $ 

where m = 1, 2, 3, . . . 

The lo\Test frequency is 

Xquation (2) can then be written 

c 

l 

(4) 
. . 
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After equation (4) has been expressed in terms of V, it 
becomes 

Put 

.a- 

-C’ 

Then. 

da0 + n de -- -- 
at2 c dS 

+6= 0 (5 > 

SOLUTION OF DIFFEBEKTIAL EQUATION 

A solution of equation (5) has been found in terms of 
Bessel fiznctions. Put 

8 = j+ Jh(t) 

Then equation (5) becomes 

l/An --+"> J(t)] = 0 

If x = (n - 1)/2, this equation reduces to Bessel's equa- 
tion: 
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d2J(t > 1 dJ([ > 
?-i?-+c dc 

- - t- (1 - $5(t) = 0 

Therefore Jj, (b> is a Bessel function of order h. 

The complete solutfon containing two arbitrary con- 
stants to be determined by the boundary conditions is 

6 = + 
t 

AJ,(t> + BJwh([) ; A, 
3 

nonintegral 

I- (6) 

e A$, (t> + BYA 
I 

; ?\, integral 

The function Yh(t) is a Bessel function of the second kfnd. 

The boundary conditions in terms of 5 are : 

at 2 = 0, [ = co, 6 = 0 

at z=t, rl = q,, c = Tt co, if = 0 

After these conditions have been applfed, the resulting 
equations can be simplified by means of the relations for 
Bessel functions: 

d 
dxx [ 

Tn J,(x) = - x-~ J,+,(x) 
I 

a 
dx 

xn J,(x) 
I 

= xn J,-,(x) 

The condition that the two equations for A and B have 
solutions other than A = 0, B = 0, is that the deterni- 
nant of the coefficients of A and B vanish: 

JA((~) yjj cl,> 

JA+lc~& Yh+l(Vo) 
= 0; h, integral 
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This condition determines an admissfble set of values of 
t 0’ the roots of equatiop (7). These roots will be called 
b r* 

After the value or values of co tbt satisfy the 
determfnantal equation have been found, the shapes of the 
deflection curves for the various modes can be directly 
obtained from equation (6). At the root section, t = 
to = brs 6 = 0, 

0 = AJh(Er) + BJ,h(%r); A, nonintegral 

0 = AJi\ (!!.,I + BYA( A, integral 

Hence 

6 = JA (0 
Jh cc.,> 

@ J_^~-J JeA(O 
3 

; h, nonintegral 

(8) 

e JA (E r> 
Jid.0 - Yh7c-7 Y^u.> ; h, 

3 
integral 

r 

where 5 determines position along the span. 

Equation (7) is a transcendental equation of mhich 
the roots, cr, determine the frequencies of the various 
modes. The equation cannot be solved explicitly but ma.7 
be solved indirectly. The roots may be obtafned.to any 
desired accuracy by use of tables or by the graphical pro- 
cedure of _olottfng the value of the detormfnant against 
5 0’ For each root there is a corresponding natural fre- 
quency of vibratfon given by 

For the case of a pointed beam, equatrons (7) can be 
expressed in a simpler form. From the series expansion 
for Bessel functfons, 

lim 
Jh+1(7it Q, 0 r (-A) 

T,b0 J-+l(~tro) 
= lim 

(q,l )2(h+1) 

'It-0 22th+1) 
x 0 

r(A+2) 

Hence, for pointed beams (Qt = 01, the first cf equations 

c 
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. 

(7) becomes 

J^(b,> = Jh+1($ lo ) -- 
- J_h:;nJ, > 

J,,($,) = o 

When h is an integer, the same result is obtained: 

-J,(C,) = 
Jh+l(T,tI:o) 

lim - ----- -- Y^U,> 
Tit+0 YhcLWo) 

(7, co P+l nmtroP+l y ([ ) 
----- h 0 = qt2$o pl(~+l)! A! $+I 

= 0 

APPLICATION OF ANALYSIS 

The preceding analysis can be immediately aoplied to 
beams the forms of which are mathematically specified by 
values of n and rlt. Kost %eams, however, ail1 not ex- 
actly correspond to one of these cases; a method must 
therefore be found for determining the best values of n 
and 3% for the actual beam. An approximate method will 
be illustrated for a wing tho shape of which is given by a 
drntving. Othar.mothods, such as the mothod of least 
squares, are also available for determining these pnramo- 
torn. The thickness mill bo assumod to vary in the same 
way as the plan form. 

B sketch of a typical wing, togethor with a tablo of 
dimensions, is qivon in figure 2. It is requirod to rep- 
rasont this shape by an equation of the form , 

The parameter r) varies linearly along the span from a 
value of ljt at the tip to 1 at the root. The procedure 
is to assume arbitrarily a value of Vt, then to make a 
logarithmic plot of chord or semichord against q. This 
process is repeated for different values of rlt until the 

, 
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value cif '$ giving the 'best straight line is determined. 
The slope of this line is .the value of,: b/,fL. The third and 
fourth columns of the‘table in figure 2'give. values of n 
for the assumed values for nt of 0 gld: 0.1. Figure 3 
is a logarithmic plot of chord against q. The points for 
nt = 0 fall nearly on a straight line. The slope of this 
line is 0.37, which gives n = 4 X 0.37 = 1.48. The values 
of c recalculated from the equation 

C = O-96 qog3’ . ’ 

are given in the last column of the table in figure 2. 

The frequency ratio, w/w, I determined from the roots 
of equation (7), is a function of only two variables, n 
and qt. Figure 4 shows this ratio as a function of ?t 
for several values of n. The actual frequency is given by 

The frequency ratio fdr pointed beans ul+ = 0) is <iv-en. 
in fequre 5 for several values of n and for several modes. 
For the wing previously described (fig. 2). the frequency 
ratio is 1.77. The shape of the deflection curve is shown 
in figure 6 for several typical values of n and IIt. 

FXPERIL1ENTA.L RESULTS 

Five duralumin beams (fig. 7) were constructed and 
their frequencies were measured to check the theorettcal 
values of the frequency ratio. The central cross section 
of each beam was a rectangle 6 inches wide and l/4 inch 
thick. Tho beams were geometrically similar in cross sec- 
tion along the span and had straight taper, the correspond- 
ing values of IJt being 1.00, 0.75, 0.50, 0.25, 0.00. It 
is apparent from the boundary conditions that a freely SUS- 
pended symmetrical beam vfbratinq in torsfon with a node 
at the center mill have the same frequenc%es as one built 
in at the center. The preceding analysis may therefore be 
applied to these beams. 

The experimental values of tLe frequency ratio are 
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plotted together with the theoretical curve for n = 4 in 
figure 8. The greatest discrepancy between experiment and 
theory fs 2 percent, which is considered to be within tho 
limit of accuracy determined by the machining of the beams 
and the measurements of the frequency. 

CONCLUSIONS 

The results of the tests of five beams showed that 
the assumptions underlying the equation of torsional vi- 
bration of a tapered beam 

pd* a Pap =a; C 
ae 

CJ(z) a; 1 
are justifiable for all practical purposes. The frequency 
ratio for even the most tapered case agreed with the theory 
to within the experimental error. 

. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 23, 1939. 
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Station 
3876543210 

q Station Chord o-y6q 0.37 
3 = 0 qt = O,l 

- 0 0.00 0.00 0.10 0.00 
1 .46 .11 .20 .42 
2 .57 .22 .30 .55 
3 .65 -33 .40 I .64 
4 .72 .44 .50 .7l. 
5 .77 .55 .60 .76 
6 .80 .66 .70 .82 
7 .82 .77 .80 .87 
8 .85 .88 .90 .51 
3 

/ 
.58 .9Y 1.00 .96 

I 

Figure 2.- Plan of a typical wing. 
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Figure 3.7 Logarithmic plot of chord againet q for a typical wing. 
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Pigqe 4.- The freq'ukiby ratio UJ/&I~, as a function of qt 
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Figure 5.- The frequency ratlo, 1~ ~1, b for pointed beams (% = 0). 
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Figse‘G.-.Zhe shape of the deflection curve for typical valuea of II and qt. 
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Figure 8,- Coqarison of experimental values cf frequency ratio 
with theoretical curve for n=4. 
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